Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668730

RESUMEN

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Asunto(s)
Edición Génica , Hepatocitos , Hidrolasas , Ratones Endogámicos C57BL , Tirosinemias , Animales , Tirosinemias/terapia , Tirosinemias/genética , Edición Génica/métodos , Ratones , Hepatocitos/trasplante , Hepatocitos/metabolismo , Hidrolasas/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sistemas CRISPR-Cas , Electroporación/métodos , Ratones Noqueados , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Modelos Animales de Enfermedad , Ciclohexanonas , Nitrobenzoatos
2.
Nat Commun ; 15(1): 1955, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438373

RESUMEN

Clinical translation of AAV-mediated gene therapy requires preclinical development across different experimental models, often confounded by variable transduction efficiency. Here, we describe a human liver chimeric transgene-free Il2rg-/-/Rag2-/-/Fah-/-/Aavr-/- (TIRFA) mouse model overcoming this translational roadblock, by combining liver humanization with AAV receptor (AAVR) ablation, rendering murine cells impermissive to AAV transduction. Using human liver chimeric TIRFA mice, we demonstrate increased transduction of clinically used AAV serotypes in primary human hepatocytes compared to humanized mice with wild-type AAVR. Further, we demonstrate AAV transduction in human teratoma-derived primary cells and liver cancer tissue, displaying the versatility of the humanized TIRFA mouse. From a mechanistic perspective, our results support the notion that AAVR functions as both an entry receptor and an intracellular receptor essential for transduction. The TIRFA mouse should allow prediction of AAV gene transfer efficiency and the study of AAV vector biology in a preclinical human setting.


Asunto(s)
Dependovirus , Hígado , Humanos , Animales , Ratones , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Hepatocitos
3.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242326

RESUMEN

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Ratones , Animales , Panobinostat/farmacología , Panobinostat/uso terapéutico , Hepatoblastoma/tratamiento farmacológico , Irinotecán/uso terapéutico , Vincristina/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/inducido químicamente , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias Hepáticas/patología , Ácidos Hidroxámicos/farmacología
4.
J Hepatol ; 80(2): 282-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37890720

RESUMEN

BACKGROUND & AIMS: Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS: Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS: Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION: Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS: Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hígado/patología , Modelos Animales de Enfermedad , Carcinogénesis/metabolismo , Carcinógenos/metabolismo
5.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546995

RESUMEN

Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.

6.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075130

RESUMEN

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Asunto(s)
Glutaril-CoA Deshidrogenasa , Lisina , Animales , Ratones , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Lisina/metabolismo , Ratones Noqueados , Hígado/metabolismo
7.
Eur J Pharm Sci ; 181: 106358, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513193

RESUMEN

Duloxetine (DLX) is widely used to treat major depressive disorder. Little is known about the mechanistic basis for DLX-related adverse effects (e.g., liver injury). Human CYP1A2 and CYP2D6 mainly contributes to DLX metabolism, which was proposed to be involved in its adverse effects. Here, we investigated the roles of Cyp1a2 and Cyp2d on DLX pharmacokinetic profile and tissue distribution using a Cyp1a2 knockout (Cyp1a2-KO) mouse model together with a Cyp2d inhibitor (propranolol). Cyp1a2-KO has the few effects on the systematic exposure (area under the plasma concentration-time curve, AUC) and tissue disposition of DLX and its primary metabolites. Propranolol dramatically increased the AUCs of DLX by 3 folds and 1.5 folds in WT and Cyp1a2-KO mice, respectively. Meanwhile, Cyp2d inhibitor decreased the AUC of Cyp2d-involved DLX metabolites (e.g., M16). Mouse tissue distribution revealed that DLX and its major metabolites were the most abundant in kidney, followed by liver and lung with/without Cyp2d inhibitor. Cyp2d inhibitor significantly increased DLX levels in tissues (e.g., liver) in WT and KO mice and decreases the levels of M3, M15, M16 and M17, while it increased the levels of M4, M28 and M29 in tissues. Our findings indicated that Cyp2d play a fundamental role on DLX pharmacokinetic profile and tissue distribution in mice. Clinical studies suggested that CYP1A2 has more effects on DLX systemic exposure than CYP2D6. Further studies in liver humanized mice or clinical studies concerning CYP2D6 inhibitors-DLX interaction study could clarify the roles of CYP2D6 on DLX pharmacokinetics and toxicity in human.


Asunto(s)
Trastorno Depresivo Mayor , Inhibidores de Captación de Serotonina y Norepinefrina , Humanos , Ratones , Animales , Clorhidrato de Duloxetina , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Propranolol , Serotonina , Fármacos del Sistema Nervioso Central , Ratones Noqueados
8.
Drug Metab Dispos ; 50(2): 128-139, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34785568

RESUMEN

Duloxetine (DLX) is a dual serotonin and norepinephrine reuptake inhibitor, widely used for the treatment of major depressive disorder. Although DLX has shown good efficacy and safety, serious adverse effects (e.g., liver injury) have been reported. The mechanisms associated with DLX-induced toxicity remain elusive. Drug metabolism plays critical roles in drug safety and efficacy. However, the metabolic profile of DLX in mice is not available, although mice serve as commonly used animal models for mechanistic studies of drug-induced adverse effects. Our study revealed 39 DLX metabolites in human/mouse liver microsomes and mice. Of note, 13 metabolites are novel, including five N-acetyl cysteine adducts and one reduced glutathione (GSH) adduct associated with DLX. Additionally, the species differences of certain metabolites were observed between human and mouse liver microsomes. CYP1A2 and CYP2D6 are primary enzymes responsible for the formation of DLX metabolites in liver microsomes, including DLX-GSH adducts. In summary, a total of 39 DLX metabolites were identified, and species differences were noticed in vitro. The roles of CYP450s in DLX metabolite formation were also verified using human recombinant cytochrome P450 (P450) enzymes and corresponding chemical inhibitors. Further studies are warranted to address the exact role of DLX metabolism in its adverse effects in vitro (e.g., human primary hepatocytes) and in vivo (e.g., Cyp1a2-null mice). SIGNIFICANCE STATEMENT: This current study systematically investigated Duloxetine (DLX) metabolism and bioactivation in liver microsomes and mice. This study provided a global view of DLX metabolism and bioactivation in liver microsomes and mice, which are very valuable to further elucidate the mechanistic study of DLX-related adverse effects and drug-drug interaction from metabolic aspects.


Asunto(s)
Trastorno Depresivo Mayor , Inhibidores de Captación de Serotonina y Norepinefrina , Animales , Trastorno Depresivo Mayor/metabolismo , Clorhidrato de Duloxetina/metabolismo , Ratones , Microsomas Hepáticos/metabolismo , Serotonina/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/metabolismo
9.
Mol Ther Methods Clin Dev ; 21: 656-669, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34141821

RESUMEN

Clinical application of somatic genome editing requires therapeutics that are generalizable to a broad range of patients. Targeted insertion of promoterless transgenes can ensure that edits are permanent and broadly applicable while minimizing risks of off-target integration. In the liver, the Albumin (Alb) locus is currently the only well-characterized site for promoterless transgene insertion. Here, we target the Apoa1 locus with adeno-associated viral (AAV) delivery of CRISPR-Cas9 and achieve rates of 6% to 16% of targeted hepatocytes, with no evidence of toxicity. We further show that the endogenous Apoa1 promoter can drive robust and sustained expression of therapeutic proteins, such as apolipoprotein E (APOE), dramatically reducing plasma lipids in a model of hypercholesterolemia. Finally, we demonstrate that Apoa1-targeted fumarylacetoacetate hydrolase (FAH) can correct and rescue the severe metabolic liver disease hereditary tyrosinemia type I. In summary, we identify and validate Apoa1 as a novel integration site that supports durable transgene expression in the liver for gene therapy applications.

11.
JHEP Rep ; 3(3): 100281, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34036256

RESUMEN

BACKGROUND & AIMS: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease (NAFLD), which affects a quarter of the world's population and is associated with hepatitis, cirrhosis, and hepatocellular carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model. METHODS: We generated TIRF (transgene-free Il2rg -/-/Rag2 -/-/Fah -/-) mice, populated their livers with human hepatocytes, and fed them a Western-type diet for 12 weeks. RESULTS: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD with respect to transcriptional control of cholesterol biosynthesis. CONCLUSIONS: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis. LAY SUMMARY: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data. The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel humanised mouse system can be used to study human fatty liver disease.

12.
JHEP Rep ; 3(2): 100252, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33733079

RESUMEN

BACKGROUND & AIMS: Development of new and more effective therapies against hepatitis B virus (HBV) is limited by the lack of suitable small animal models. The HBV transgenic mouse model containing an integrated overlength 1.3-mer construct has yielded crucial insights, but this model unfortunately lacks covalently closed circular DNA (cccDNA), the episomal HBV transcriptional template, and cannot be cured given that HBV is integrated in every cell. METHODS: To solve these 2 problems, we generated a novel transgenic mouse (HBV1.1X), which generates an excisable circular HBV genome using Cre/LoxP technology. This model possesses a HBV1.1-mer cassette knocked into the ROSA26 locus and is designed for stable expression of viral proteins from birth, like the current HBV transgenic mouse model, before genomic excision with the introduction of Cre recombinase. RESULTS: We demonstrated induction of recombinant cccDNA (rcccDNA) formation via viral or transgenic Cre expression in HBV1.1X mice, and the ability to regulate HBsAg and HBc expression with Cre in mice. Tamoxifen-inducible Cre could markedly downregulate baseline HBsAg levels from the integrated HBV genome. To demonstrate clearance of HBV from HBV1.1X mice, we administered adenovirus expressing Cre, which permanently and significantly reduced HBsAg and core antigen levels in the murine liver via rcccDNA excision and a subsequent immune response. CONCLUSIONS: The HBV1.1X model is the first Cre-regulatable HBV transgenic mouse model and should be of value to mimic chronic HBV infection, with neonatal expression and tolerance of HBV antigens, and on-demand modulation of HBV expression. LAY SUMMARY: Hepatitis B virus (HBV) can only naturally infect humans and chimpanzees. Mouse models have been developed with the HBV genome integrated into mouse chromosomes, but this prevents mice from being cured. We developed a new transgenic mouse model that allows for HBV to be excised from mouse chromosomes to form a recombinant circular DNA molecule resembling the natural circular HBV genome. HBV expression could be reduced in these mice, enabling curative therapies to be tested in this new mouse model.

13.
Eur J Pharm Sci ; 153: 105488, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712217

RESUMEN

Atomoxetine (ATX), a selective and potent inhibitor of the presynaptic norepinephrine transporter, is used mainly to treat attention-deficit hyperactivity disorder. Although multiple adverse effects associated with ATX have been reported including severe liver injuries, the mechanisms of ATX-related toxicity remain largely unknown. Metabolism frequently contributes to adverse effects of a drug through reactive metabolites, and the bioactivation status of ATX is still not investigated yet. Here, we systematically investigated ATX metabolism, bioactivation, species difference in human, mouse, and rat liver microsomes (HLM, MLM, and RLM) and in mice using metabolomic approaches as mice and rats are commonly used animal models for the studies of drug toxicity. We identified thirty one ATX metabolites and adducts in LMs and mice, 16 of which are novel. In LMs, we uncovered two methoxyamine-trapped aldehydes, two cyclization metabolites, detoluene-ATX, and ATX-N-hydroxylation for the first time. Detoluene-ATX and one cyclization metabolite were also observed in mice. Using chemical inhibitors and recombinant CYP enzymes, we demonstrated that CYP2C8 and CYP2B6 mainly contribute to the formation of aldehyde; CYP2D6 is the dominant enzyme for the formation of ATX cyclization and detoluene-ATX; CYP3A4 is major enzyme responsible for the hydroxylamine formation. The findings concerning aldehydes should be very useful to further elucidate the mechanistic aspects of adverse effects associated with ATX from metabolic angles. Additionally, the species differences for each metabolite should be helpful to investigate the contribution of specific metabolites to ATX toxicity and possible drug-drug interactions in suitable models.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Microsomas Hepáticos , Animales , Clorhidrato de Atomoxetina , Metabolómica , Ratones , Norepinefrina , Ratas
14.
Nat Biomed Eng ; 4(9): 916-932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601395

RESUMEN

Sacrificial templates for patterning perfusable vascular networks in engineered tissues have been constrained in architectural complexity, owing to the limitations of extrusion-based 3D printing techniques. Here, we show that cell-laden hydrogels can be patterned with algorithmically generated dendritic vessel networks and other complex hierarchical networks by using sacrificial templates made from laser-sintered carbohydrate powders. We quantified and modulated gradients of cell proliferation and cell metabolism emerging in response to fluid convection through these networks and to diffusion of oxygen and metabolites out of them. We also show scalable strategies for the fabrication, perfusion culture and volumetric analysis of large tissue-like constructs with complex and heterogeneous internal vascular architectures. Perfusable dendritic networks in cell-laden hydrogels may help sustain thick and densely cellularized engineered tissues, and assist interrogations of the interplay between mass transport and tissue function.


Asunto(s)
Vasos Sanguíneos/citología , Carbohidratos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Vasos Sanguíneos/fisiología , Proliferación Celular , Diseño de Equipo , Hepatocitos/citología , Humanos , Hidrogeles/química , Consumo de Oxígeno , Perfusión , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación
15.
EMBO Mol Med ; 12(7): e8662, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32578942

RESUMEN

Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.


Asunto(s)
Modelos Animales de Enfermedad , Guías como Asunto , Xenoinjertos/normas , Animales , Humanos , Ratones , Ratones SCID , Neoplasias , Reproducibilidad de los Resultados
16.
Cells ; 9(4)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235678

RESUMEN

The hepatitis B virus (HBV) regulatory HBx protein is required for infection, and its binding to cellular damaged DNA binding protein 1 (DDB1) is critical for this function. DDB1 is an adaptor protein for the cullin 4A Really Interesting New Gene (RING) E3 ubiquitin ligase (CRL4) complex and functions by binding cellular DDB1 cullin associated factor (DCAF) receptor proteins that recruit substrates for ubiquitination and degradation. We compared the proteins found in the CRL4 complex immunoprecipitated from uninfected versus HBV-infected hepatocytes from human liver chimeric mice for insight into mechanisms by which HBV and the cell interact within the CRL4 complex. Consistent with its role as a viral DCAF, HBx was found in the HBV CRL4 complexes. In tissue culture transfection experiments, we showed that HBx expression led to decreased levels of known restriction factor structural maintenance of chromosomes protein 6 (SMC6) and putative restriction factors stromal interaction molecule 1 (STIM1, zinc finger E-box binding homeobox 2 (ZEB2), and proteasome activator subunit 4 (PSME4). Moreover, silencing of these proteins led to increased HBV replication in the HepG2-sodium taurocholate cotransporting polypeptide (NTCP) infection model. We also identified cellular DCAF receptors in CRL4 complexes from humanized mice. Increasing amounts of HBx did not reveal competitive DCAF binding to cullin4 (CUL4)-DDB1 in plasmid-transfected cells. Our results suggest a model in which HBx benefits virus replication by directly or indirectly degrading multiple cellular restriction factors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Virus de la Hepatitis B/metabolismo , Interacciones Huésped-Patógeno , Complejos Multiproteicos/metabolismo , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Hígado/patología , Hígado/virología , Modelos Biológicos , Unión Proteica , Replicación Viral
17.
Curr Protoc Mol Biol ; 130(1): e117, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150344

RESUMEN

Somatic liver knockout (SLiK) is a method developed to rapidly generate a liver-specific knockout of one or several genes. This technique combines the strengths of CRISPR/Cas9 gene editing and hydrodynamic tail-vein injection, a simple in vivo method for transfection of hepatocytes, to harness the powerful selection pressure of tyrosinemic livers to replace host hepatocytes with any desired gene deletion. In this protocol, we will describe sgRNA design and cloning, hydrodynamic tail-vein injection of targeting constructs, and screening and validation methods for efficient in vivo gene editing. © 2020 by John Wiley & Sons, Inc. Support Protocol 1: sgRNA design Support Protocol 2: sgRNA construction: daisy chaining multiple sgRNAs Basic Protocol: Delivery of DNA by hydrodynamic tail-vein injection and liver repopulation of edited hepatocytes Support Protocol 3: Validation of CRISPR/Cas9 cutting in vivo.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Hepatocitos/metabolismo , Hígado/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Ratones Noqueados , ARN Guía de Kinetoplastida/genética , Transfección/métodos
18.
Curr HIV Res ; 18(1): 19-28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31870268

RESUMEN

The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on 'Small Animal Models for HIV, Hepatitis B, and Tuberculosis' on May 30, 2019. Highlights of the workshop are outlined below.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH/patología , VIH-1/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B/patología , Mycobacterium tuberculosis/inmunología , Tuberculosis/patología , Animales , Coinfección/microbiología , Cobayas , Infecciones por VIH/inmunología , Hepatitis B/inmunología , Humanos , Macaca mulatta , Marmota , Ratones , National Institute of Allergy and Infectious Diseases (U.S.) , Conejos , Tuberculosis/inmunología , Estados Unidos
19.
JHEP Rep ; 1(5): 392-402, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32039390

RESUMEN

CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.

20.
Commun Biol ; 1: 67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271949

RESUMEN

Hepatoblastoma (HBL) is a pediatric liver cancer that affects children under the age of three. Reduction of tumor suppressor proteins (TSPs) is commonly seen in liver cancer. However, in our studies we find that aggressive, chemo-resistant HBLs exhibit an elevation of TSPs. HBL patients with a classic phenotype have reduced TSP levels, but patients with aggressive HBL express elevated TSPs that undergo posttranslational modifications, eliminating their tumor suppression activities. Here we identify unique aggressive liver cancer domains (ALCDs) that are activated in aggressive HBL by PARP1-mediated chromatin remodeling leading to elevation of modified TSPs and activation of additional cancer pathways: WNT signaling and ß-catenin. Inhibition of PARP1 blocks activation of ALCDs and normalizes expression of corresponding genes, therefore reducing cell proliferation. Our studies reveal PARP1 activation as a mechanism for the development of aggressive HBL, further suggesting FDA-approved PARP1 inhibitors might be used for treatment of patients with aggressive HBL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...